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Among other things, the familiar power mean satis�es the well known rela-
tion
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for the arbitrary sequence of positive reals a1; : : : ; an and any positive real k � 1.
This inequality serves as a useful tool that can eliminate unwieldy radicals for
our e¤orts to verify other inequalities. This it does by bounding them below.
However, a problem arises should we require an upper bound of such a radical.
The following result is meant to help address that concern.

Proposition 1 Let a and b be positive reals and let k � �1 be an integer. Then
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with equality where a = b or k = �1, and where for k = 0 we interpret the
right-hand side as

p
ab. Moreover, the inequality also holds for any real number

k � 2. Furthermore, if 1 � k � 3=2 or k � �1, then it holds in the reverse
direction.

Proof. For k = 1,
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For k = 0,
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Now de�ne fp(a; b) =
�
ap+bp

2

� 1
p . The conclusion of the proof of proposition

1 hinges on the pursuant lemma.

Lemma 1 The two variable power mean fp(a; b) is concave in p for p � 1 and
convex in p for p � �1. That is, @2

@p2 [fp(a; b)] � 0 for p � 1 and
@2

@p2 [fp(a; b)] �
0 for p � �1, with equality if and only if a = b.

We �rst establish the claim for p = 1. Observe that fp(a; b) = 1
r � fp(ar; br).

Thus, we may take b = 1. We consider the function F (a) given by

F (a) :=
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In showing that F (a) � 0 for a > 0, the following will be of interest:

F1(a) :=
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Clearly, F (1) = 0. Suppose that F (b0) = 0 for some positive real b0 other

than 1. Then, since F (a) is di¤erentiable with respect to a on the positive
reals, by Rolle�s theorem it must be that for some b1 strictly between b0 and
1 we have F1(b1) = 0. But F1(1) = 0, and since F1(a) is also di¤erentiable, it
must be that for some b2 strictly between b1 and 1 we have d

da [F1(a)]ja=b2 = 0,
implying that F2(b2) = 0. Once more by the same idea, there must exist some b3
strictly between b2 and 1 for which F3(b3) = 0. But F3(a) is a strictly decreasing
function of a, so it has at most one positive real root. By inspection, that root
is a = 1, and so b3 cannot exist. Therefore, our assumption that b0 exists was
false. It follows that a = 1 is the unique positive zero of F (a). Now we compute

lim
a!0+

F (a) = ln(1=2) + 1=2 � [ln(1=2)]2 = ln(1=2) (1 + (1=2) ln(1=2)) < 0

F (2e� 1) = (2e� 1) ln
�

e

2e� 1

��
1 + (1=2) ln

�
e

2e� 1

��
< 0

Therefore, F (a) assumes negative values for 0 < a < 1 and a > 1. Since F (a)
is continuous, it follows from the intermediate value theorem that it is nowhere
positive. Furthermore, equality holds precisely when a = 1, which corresponds
directly to a = b, as desired.
Now we are ready to generalize p. Observe that f�p(a; b) = f�(a

p; bp)1=p.
Thus, taking p � 1 �xed and writing q = �p, we have
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Clearly this is nonpositive. Moreover, if it is zero, then the second term must
also be zero, implying that a = b. Yet whenever a = b, the entire expression is
zero, so the lemma is shown for p � 1.
Now taking p � �1, we have
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(f�p(1=a; 1=b))
3

Since �p � 1, we have @2

@p2 [f�p(1=a; 1=b)] � 0 with equality if and only if a = b.
It is easily seen that the second partial is nonnegative for p � �1 with equality
only where a = b, as desired. �
It follows from the lemma that f2(a; b)� f1(a; b) � @

@p [fp(a; b)] for all p � 2.
But

(a� b)2
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3a2 + 2ab+ 3b2 � (a+ b)
p
8a2 + 8b2

(3a2 + 2ab+ 3b2)2 � (a+ b)2(8a2 + 8b2)

9a4 + 12a3b+ 22a2b2 + 12ab3 + 9b4 � 8a4 + 16a3b+ 16a2b2 + 16ab3 + 8b4

a4 � 4a3b+ 6a2b2 � 4ab3 + b4 = (a� b)4 � 0

Thus, for k � 2,

(1 + k)(a� b)2 + 8ab
4(a+ b)

= f1(a; b) + (k � 1)
�
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= fk(a; b)

Now we establish the claim for k = 3=2. For convenience, put a = x2; b = y2.
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Then

1
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5a2 + 6ab+ 5b2 � 8(a+ b)

�
a3=2 + b3=2

2

�2=3
5x4 + 6x2y2 + 5y4 � 8(x2 + y2)

�
x3 + y3

2

�2=3
4
�
5x4 + 6x2y2 + 5y4

�3 � 512(x2 + y2)3(x3 + y3)2

0 � 512(x2 + y2)3(x3 + y3)2 � 4
�
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Thus,
5
2 (a�b)

2+8ab

4(a+b) � f3=2(a; b) and (*) holds in the reverse direction for k = 3=2.
But recall that equality holds identically in (*) for k = 1. Hence, since fk(a; b)
is concave in k for k 2 [1; 3=2] while the left-hand side of (*) is linear in k, it
follows that (*) holds in the reverse direction for 1 � k � 3=2, as claimed.
Observe that because (*) is homogenous and symmetric with respect to a

and b, to prove the claim for k � �1 it su¢ ces to prove the case b = 1. We shall
check that (a�1)2

4(a+1) �
@
@p [fp(a; 1)]

���
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. Calculating the derivative on the right,

this is equivalent to
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We will show that the function G(a) given by

G(a) := (a+ 1)(a� 1)2 � 8a
�
a ln(a) + (a+ 1) ln

�
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��
is nonnegative for all a � 1. In showing this, the following will be of interest:

G1(a) = G0(a) = (a� 1)(3a+ 1)� 16a ln(a)� 8(2a+ 1) ln
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G3(a) = G000(a) =

2(a� 1)(3a2 + 9a+ 8)
a(a+ 1)2

Clear, a = 1 is a zero of G(a); G1(a) and G2(a). Now suppose there exists a
positive real c0 other than 1 such that G(c0) = 1. Then by Rolle�s theorem,
there exists a number c1 strictly between c0 and 1 such that G1(c1) = 0. Since
G1(1) = 0, by the same principle there must exist c2 strictly between c1 and
1 such that G2(c2) = 0. Likewise, there exists c3 strictly between c2 and 1
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such that G3(c3) = 0. Since by inspection a = 1 is the unique real root of
G3(a) = 0, g3 cannot exist, which is a contradiction. Hence, a = 1 is the unique
root of G(a) = 0. It is easily seen that lima!0+ G(a) = 1 and that G(a) grows
unbounded as a tends to in�nity. Hence, by the intermediate value theorem,
G(a) can never be negative.

Combining this fact with the lemma, we deduce that (a�b)2
4(a+b) �

@
@p [fp(a; b)]

for all p � �1. Therefore,

0 �
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(a� b)2
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dp

= f�1(a; b)� fp(a; b) +
(p+ 1)(a� b)2
4(a+ b)

fp(a; b) � (1 + p)(a� b)2 + 8ab
4(a+ b)

completing the proof of proposition 1. y
Although we do not show it here, the di¤erence between the two sides be-

haves asymptotically as C1(a� b)4 near equality, excepting in the case k = 3=2,
where the di¤erence converges to 0 as C2(a� b)6.
Can the proposition be generalized to n variables? While it may be possible

to conjecture a generalized radical-free expression, in the author�s opinion a
proof will likely be considerably more di¢ cult. In particular, there does not
exist a lower bound P such that the arbitrary power mean gp(a1; : : : ; an) =�
ap1+���+a

p
n

n

�1=p
satis�es @2

@p2 [gp(a1; : : : ; an)] � 0 for all p � P . Consider the

sequence x1; : : : ; xn given by xi = i
n for i = 1; : : : ; n. Employing a Riemann

sum, we write
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!
 �(p)

It follows that for a given interval (a; b),  �(p) becomes convex with respect to
p 2 (a; b) for su¢ ciently large �, since one easily checks that the dominant term
in the second partial is 1

p4 (log(1 + �p))
2. A generalization to n variables would

therefore require at least one novel idea to circumvent the collapse of lemma 1.
It remains to be seen whether this is feasible.
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