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Among other things, the familiar power mean satisfies the well known rela-

tion
- tan _ af + - +ak
n n

for the arbitrary sequence of positive reals a1, . .., a,, and any positive real k& > 1.
This inequality serves as a useful tool that can eliminate unwieldy radicals for
our efforts to verify other inequalities. This it does by bounding them below.
However, a problem arises should we require an upper bound of such a radical.
The following result is meant to help address that concern.

Proposition 1 Let a and b be positive reals and let k > —1 be an integer. Then
1
(1+ k)(a — b)* + 8ab - ak + b\ * (%)
4(a+ D) - 2
with equality where a = b or k = +1, and where for k = 0 we interpret the
right-hand side as Vab. Moreover, the inequality also holds for any real number

k > 2. Furthermore, if 1 < k < 3/2 or k < —1, then it holds in the reverse
direction.

Proof. For k=1,
(1+1)(a—0b)*+8ab  2a®+4ab+2b> a+b

4(a +b) dla+b) 2
For k = —1,
(1-D(@-b2+8b 2  [at+b '\
4(a+0) B 2
For k =0,
a? + 6ab + b2
g rodTy S b
4(a + b) > Vab
a?+6ab+ b > 4a2b? +4a2b?
a2 —4a2b? + 6ab — 4azb? + b2 > 0
(Va—vb)* > 0

*The author wishes to thank Fedor Nazarov and Daniel W. Stroock for their help in
inspiring this note.
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Now define f,(a,b) = (££2)7. The conclusion of the proof of proposition
1 hinges on the pursuant lemma.

Lemma 1 The two variable power mean fy(a,b) is concave in p for p > 1 and
convex in p for p < —1. That is, 5—; [fp(a,0)] <0 forp>1 and 68—:2 [fpla,b)] >
0 for p < —1, with equality if and only if a = b.

We first establish the claim for p = 1. Observe that f,(a,b) = 1 - f,(ar,br).
Thus, we may take b = 1. We consider the function F(a) given by

9?2 a+1 1 a+1\1? a+1 a a+1\1?
A o ) e ()] e (55 )+ [ (50

= g fe(a1)]

In showing that F'(a) < 0 for a > 0, the following will be of interest:

n (<) +1n (%) (20 + (@ n (%t
Fl(a)::di;[F(a)] — 2In (45) +1 (2”2()(1(4?1;( + 1) (%5H))
Fy(a) := a(a—l—l)Q.%[Fl(a)] = aln (a—2+—1)+1n <a2—31>
Fy(a) = [Ba(a)] = 4+i+m(ﬁl>

Clearly, F'(1) = 0. Suppose that F(by) = 0 for some positive real by other
than 1. Then, since F(a) is differentiable with respect to a on the positive
reals, by Rolle’s theorem it must be that for some by strictly between by and
1 we have Fy(by) = 0. But Fy(1) = 0, and since Fj(a) is also differentiable, it
must be that for some by strictly between b; and 1 we have % [F1(a)]l,—p, = 0,
implying that F5(b2) = 0. Once more by the same idea, there must exist some b3
strictly between by and 1 for which F3(b3) = 0. But F3(a) is a strictly decreasing
function of a, so it has at most one positive real root. By inspection, that root
is a = 1, and so b3 cannot exist. Therefore, our assumption that by exists was
false. It follows that @ = 1 is the unique positive zero of F'(a). Now we compute

agrg+ F(a) = In(1/2)+1/2-[In(1/2)]* = In(1/2) (1 + (1/2)In(1/2)) < 0

F2e—1) = (2¢—1)In (2661> (1+(1/2)1n (L)) <0

Therefore, F(a) assumes negative values for 0 < a < 1 and a > 1. Since F(a)
is continuous, it follows from the intermediate value theorem that it is nowhere
positive. Furthermore, equality holds precisely when a = 1, which corresponds
directly to a = b, as desired.
Now we are ready to generalize p. Observe that fg,(a,b) = fo(aP, bP)1/P.
Thus, taking p > 1 fixed and writing ¢ = 0p, we have
2
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Clearly this is nonpositive. Moreover, if it is zero, then the second term must
also be zero, implying that a = b. Yet whenever a = b, the entire expression is
zero, so the lemma is shown for p > 1.

Now taking p < —1, we have

0 0 1
o b0 = s | )
2 (&1 (1/a 1/0)]) = F-p(1 /a1 /) [F-p(1/a,1/b)]
(/- (1/a,1/0))°

Since —p > 1, we have g—; [f-p(1/a,1/b)] < 0 with equality if and only if & = b.
It is easily seen that the second partial is nonnegative for p < —1 with equality
only where a = b, as desired. [J

It follows from the lemma that fs(a,b) — f1(a,b) > a% [fp(a,b)] for all p > 2.
But

(a —b)?
> —
4(a+b) = fQ(CL?b) fl(a7b)
3a2 + 2ab + 3b? a? + b?
4(a +b) - 2
3a® +2ab+3b* > (a+b)\/8a? + 8b2
(3a® + 2ab+ 3b*)* > (a+b)*(8a” + 8b?)
9a* + 12a3b + 22426 + 12ab® + 9* > 8a* + 16a3b + 16a%b* + 16ab> + 8b*
a* — 4a®b + 6a%0* — 4ab® +bv* = (a—0)*>0

Thus, for k > 2,

(1+k)(a—b)?*+8ab (a—b)?
4(a +b) = hlab)+ k-1 (4(a+b)>

v

k
faat)+ [ a%[fpw,b)}dp
= fk(aab)

Now we establish the claim for k = 3/2. For convenience, put a = 22, b = y2.
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Then

3(a—1b)?
2 < b) — b
4(a/+b) — f3/2(a’3 ) fl(a7 )
3/2 4 p3/2\ %3
502 + 6ab+ 50> < 8(a+ D) (";)
3 3\ 2/3
5at + 622y + 5yt < 8(z? +y?) (a: —;—y )
4 (5a + 62°y* + 5y4)3 < 5122 + )3 (23 + 43)?
0 < 512(2® +y*)*(z® +y*)? — 4 (52" + 627y + 5y4)3
< 4z —y)5(325 + 1825y — 3xty? 4 282393 — 3a%y? + 18xy° + 3y%)

Thus, %jgggab < f3/2(a,b) and (*) holds in the reverse direction for k& = 3/2.

But recall that equality holds identically in (*) for k£ = 1. Hence, since fi(a,b)
is concave in k for k € [1,3/2] while the left-hand side of (*) is linear in k, it
follows that (*) holds in the reverse direction for 1 < k < 3/2, as claimed.
Observe that because (*) is homogenous and symmetric with respect to a
and b, to prove the claim for £ < —1 it suffices to prove the case b = 1. We shall

check that % > 8% [fp(a,1)] ‘p:%. Calculating the derivative on the right,

this is equivalent to

2a (a In(a) + (a+1)In (%))
(a+1)2

(a—1)?
4(a+1)

>
We will show that the function G(a) given by

G(a) = (a+ D(a—1)% - 8a (aln(a) +(a+1)In (&))

is nonnegative for all @ > 1. In showing this, the following will be of interest:

a+1

— ((a— 1)(3a+5) —8(a+1)In <a2f1>)

2(a — 1)(3a® 4 9a + 8)
ala+1)2

Gia) = G'(a)=(a—1)(3a+1)—16aln(a) — 8(2a+ 1)In <2>

Ga(a) = G"(a) =

Gs(a) = G"(a)=

Clear, a = 1 is a zero of G(a),G1(a) and G2(a). Now suppose there exists a
positive real ¢y other than 1 such that G(cp) = 1. Then by Rolle’s theorem,
there exists a number ¢; strictly between ¢g and 1 such that G1(¢;) = 0. Since
G1(1) = 0, by the same principle there must exist co strictly between ¢; and
1 such that Ga(cg) = 0. Likewise, there exists c3 strictly between ¢y and 1

MATHEMATICAL REFLECTIONS 2, (2006) 4



such that G3(c3) = 0. Since by inspection a = 1 is the unique real root of
G3(a) =0, g3 cannot exist, which is a contradiction. Hence, a = 1 is the unique
root of G(a) = 0. It is easily seen that lim,_ g+ G(a) = 1 and that G(a) grows
unbounded as a tends to infinity. Hence, by the intermediate value theorem,

G(a) can never be negative.
2

=5 > 2 fy(a,b)]

Combining this fact with the lemma, we deduce that ffz

for all p < —1. Therefore,

= fﬁl((hb) — fp(a7b) + w

4(a+b)
(14 p)(a — b)? + Sab
4(a+ D)

fp(a,b)

Y%

completing the proof of proposition 1.

Although we do not show it here, the difference between the two sides be-
haves asymptotically as Cy(a — b)* near equality, excepting in the case k = 3/2,
where the difference converges to 0 as Ca(a — b)°.

Can the proposition be generalized to n variables? While it may be possible
to conjecture a generalized radical-free expression, in the author’s opinion a
proof will likely be considerably more difficult. In particular, there does not

exist a lower bound P such that the arbitrary power mean g,(a1,...,a,) =
| S 1/p . .

(w) satisfies g—; lgp(a1,...,a,)] < 0 for all p > P. Consider the

sequence Z1,...,T, given by x; = % for ¢ = 1,...,n. Employing a Riemann

sum, we write

oS P 1 v .
Yy(p) = lim gp(27,...,2)) = lim {/ ==220 = (/ :E’\pdm) = (14+Ap)~ 7
n—oo n—oo n 0

We compute

0 1 A

e [a(p)] = (p2 In(1 + Ap) — M) ¥a(p)

0 B 1 A 22 2\ + 3\%p
o W= <<p 0409~ S ) =

It follows that for a given interval (a,b), ¥, (p) becomes convex with respect to
p € (a,b) for sufficiently large A, since one easily checks that the dominant term
in the second partial is p% (log(1 + Ap))®. A generalization to n variables would
therefore require at least one novel idea to circumvent the collapse of lemma 1.
It remains to be seen whether this is feasible.
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